ON AN INTEGRAL OPERATOR ON THE UNIT BALL IN Cn
نویسنده
چکیده
Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. In this paper, we investigate the integral operator Tg( f )(z) = ∫ 1 0 f (tz) g(tz)(dt/t), f ∈ H(B), z ∈ B, where g ∈H(B) and g(z)=∑nj=1 zj(∂g/∂zj)(z) is the radial derivative of g. The operator can be considered as an extension of the Cesàro operator on the unit disk. The boundedness of the operator on a-Bloch spaces is considered.
منابع مشابه
AN INTEGRAL–TYPE OPERATOR FROM BLOCH SPACES TO Qp SPACES IN THE UNIT BALL
Let H(B) denote the space of all holomorphic functions on the unit ball B of Cn . Let α > 0 , f ∈ H(B) with homogeneous expansion f = ∑k=0 fk . The fractional derivative Dα f is defined as Dα f (z) = ∞ ∑ k=0 (k+1)α fk(z). Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0 . In this paper we consider the following integral-type operator
متن کاملSOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK
We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.
متن کاملParabolic starlike mappings of the unit ball $B^n$
Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$ where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...
متن کاملRIEMANN-STIELTJES OPERATORS FROM F(p,q,s) SPACES TO α-BLOCH SPACES ON THE UNIT BALL
Let H(B) denote the space of all holomorphic functions on the unit ball B Cn. We investigate the following integral operators: Tg( f )(z)= ∫ 1 0 f (tz) g(tz)(dt/t), Lg( f )(z)= ∫ 1 0 f (tz)g(tz)(dt/t), f H(B), z B, where g H(B), and h(z)= ∑n j=1 zj(∂h/∂zj)(z) is the radial derivative of h. The operator Tg can be considered as an extension of the Cesàro operator on the unit disk. The boundedness...
متن کاملThe Canonical Solution Operator to ∂ Restricted to Bergman Spaces
Abstract. We first show that the canonical solution operator to ∂ restricted to (0, 1)forms with holomorphic coefficients can be expressed by an integral operator using the Bergman kernel. This result is used to prove that in the case of the unit disc in C the canonical solution operator to ∂ restricted to (0, 1)-forms with holomorphic coefficients is a Hilbert-Schmidt operator. In the sequel w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005